Category: Technology
CURRICULUM
- SECTION 1:
Introduction to Big Data
- 1
- 2
- 3Why Hadoop, Big Data and Map Reduce Part - B10:22
- 4Why Hadoop, Big Data and Map Reduce Part - C12:34
- 5Architecture of Clusters19:09
- 6Virtual Machine (VM), Provisioning a VM with vagrant and puppet15:54
- SECTION 2:
Hadoop Architecture
- 7
- 8Set up a single Node Hadoop pseudo cluster Part - B12:34
- 9Set up a single Node Hadoop pseudo cluster Part - c12:07
- 10Clusters and Nodes, Hadoop Cluster Part - A13:23
- 11Clusters and Nodes, Hadoop Cluster Part - B14:15
- 12NameNode, Secondary Name Node, Data Nodes Part - A11:05
- 13NameNode, Secondary Name Node, Data Nodes Part - B10:14
- 14Running Multi node clusters on Amazons EMR Part - A10:09
- 15Running Multi node clusters on Amazons EMR Part - B14:23
- 16Running Multi node clusters on Amazons EMR Part - C15:23
- 17Running Multi node clusters on Amazons EMR Part - D09:32
- 18Running Multi node clusters on Amazons EMR Part - E14:21
- SECTION 3:
Distributed file systems
- 19Hdfs vs Gfs a comparison - Part A13:17
- 20Hdfs vs Gfs a comparison - Part B06:12
- 21Run hadoop on Cloudera, Web Administration17:32
- 22Run hadoop on Hortonworks Sandbox19:14
- 23File system operations with the HDFS shell Part - A14:03
- 24File system operations with the HDFS shell Part - B19:37
- 25Advanced hadoop development with Apache Bigtop Part - A13:12
- 26Advanced hadoop development with Apache Bigtop Part - B07:10
- SECTION 4:
Mapreduce Version 1
- 27MapReduce Concepts in detail Part - A13:12
- 28MapReduce Concepts in detail Part - B10:55
- 29Jobs definition, Job configuration, submission, execution and monitoring Part -A09:39
- 30Jobs definition, Job configuration, submission, execution and monitoring Part -B10:44
- 31Jobs definition, Job configuration, submission, execution and monitoring Part -C16:48
- 32Hadoop Data Types, Paths, FileSystem, Splitters, Readers and Writers Part A09:32
- 33Hadoop Data Types, Paths, FileSystem, Splitters, Readers and Writers Part B10:39
- 34Hadoop Data Types, Paths, FileSystem, Splitters, Readers and Writers Part C18:52
- 35The ETL class, Definition, Extract, Transform, and Load Part - A15:14
- 36The ETL class, Definition, Extract, Transform, and Load Part - B24:14
- 37The UDF class, Definition, User Defined Functions Part - A15:14
- 38The UDF class, Definition, User Defined Functions Part - B24:14
- SECTION 5:
Mapreduce with Hive ( Data warehousing )
- 39Schema design for a Data warehouse Part - A15:14
- 40Schema design for a Data warehouse Part - B24:14
- 41Hive Configuration17:53
- 42Hive Query Patterns Part - A13:52
- 43Hive Query Patterns Part - B12:54
- 44Hive Query Patterns Part - C16:42
- 45Example Hive ETL class Part - A14:02
- 46Example Hive ETL class Part - B11:11
- SECTION 6:
Mapreduce with Pig (Parallel processing)
- 47Introduction to Apache Pig Part - A12:17
- 48Introduction to Apache Pig Part - B13:45
- 49Introduction to Apache Pig Part - C09:07
- 50Introduction to Apache Pig Part - D10:09
- 51Pig LoadFunc and EvalFunc classes13:28
- 52Example Pig ETL class Part - A12:40
- 53Example Pig ETL class Part - B14:11
- SECTION 7:
The Hadoop Ecosystem
- 54Introduction to Crunch Part - A15:20
- 55Introduction to Crunch Part - B12:52
- 56Introduction to Arvo15:18
- 57Introduction to Mahout Part - A12:51
- 58Introduction to Mahout Part - B13:05
- 59Introduction to Mahout Part - C13:32
- SECTION 8:
Mapreduce Version 2
- 60Apache Hadoop 2 and YARN Part - A12:44
- 61Apache Hadoop 2 and YARN Part - B08:23
- 62Yarn Examples14:51
- SECTION 9:
Putting it all together
- 63Amazon EMR example Part - A12:03
- 64Amazon EMR example Part - B11:46
- 65Amazon EMR example Part - C08:26
- 66Amazon EMR example Part - D10:18
- 67Apache Bigtop example Part - A12:46
- 68Apache Bigtop example Part - B
- 69Apache Bigtop example Part - C13:27
- 70Apache Bigtop example Part - D13:54
- 71Apache Bigtop example Part - E13:06
- 72Apache Bigtop example Part - F13:45
- 73
- 74References2 pages
No comments:
Post a Comment